Accepted Manuscript

Title: Eugenol confers resistance to *Tomato yellow leaf curl virus* (TYLCV) by regulating the expression of *SlPer1* in tomato plants

Author: Wei-Jie Su Wen-Jing Lv Li-Na Li Gan Yin Xiaofang Hang Yanfeng Xue Jian Chen Zhiqi Shi

PII: DOI: Reference: S1871-6784(16)00004-2 http://dx.doi.org/doi:10.1016/j.nbt.2016.01.001 NBT 848

To appear in:

 Received date:
 6-8-2014

 Revised date:
 14-12-2015

 Accepted date:
 7-1-2016

Please cite this article as: Su, W.-J., Lv, W.-J., Li, L.-N., Yin, G., Hang, X., Xue, Y., Chen, J., Shi, Z., Eugenol confers resistance to *Tomato yellow leaf curl virus* (TYLCV) by regulating the expression of *SlPer1* in tomato plants, *New Biotechnology* (2016), http://dx.doi.org/10.1016/j.nbt.2016.01.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1		Highlights
2	•	Eugenol showed effective anti-TYLCV activity.
3	•	Eugenol could stimulate plant immune signals.
4	•	Eugenol strongly induced the expression of a host specific <i>R</i> gene <i>SlPer1</i> .
5	•	<i>SlPer1</i> could be differentially regulated by multiple defensive signaling.
6		
7		
8		

1

- 8 Title: Eugenol confers resistance to *Tomato yellow leaf curl virus* (TYLCV) by
- 9 regulating the expression of *SlPer1* in tomato plants
- 10 Authors:
- 11 Wei-Jie Su^{1,†}, Wen-Jing $Lv^{2,†}$, Li-Na $Li^{2,†}$, Gan Yin³, Xiaofang Hang³, Yanfeng Xue^{3,4},
- 12 Jian Chen^{3, 4*} and Zhiqi Shi^{1, 3, 4*}

13 Affiliations:

- ¹College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing
- 15 210095, China
- ¹⁶ ² College of Horticulture, Nanjing Agricultural University, Weigang 1, Nanjing
- 17 210095, China
- ³ Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, 50
- 19 Zhongling Street, Nanjing 210014, China
- ⁴ Key Laboratory of Control Technology and Standard for Agro-product Safety and
- 21 Quality, Ministry of Agriculture, China. 50 Zhongling Street, Nanjing 210014, China
- 22
- ²³ [†] These authors contributed equally to this work.
- 24
- 25 * Corresponding author: Zhiqi Shi or Jian Chen
- 26 E-mail: jaasinput@gmail.com; jacksonchen206@gmail.com
- 27 Tel: +86-25-84391863; Fax: +86-25-84390422
- 28 Mailing address: College of Plant Protection, Nanjing Agricultural University,
- 29 Weigang 1, Nanjing 210095, China

30 Abstract

31	Tomato yellow leaf curl virus (TYLCV) is one of the most devastating plant diseases,
32	and poses a significant agricultural concern because of the lack of an efficient control
33	method. Eugenol is a plant-derived natural compound that has been widely used as a
34	food additive and in medicine. In the present study, we demonstrated the potential of
35	eugenol to enhance the resistance of tomato plants to TYLCV. The anti-TYLCV
36	efficiency of eugenol was significantly higher than that of moroxydine hydrochloride
37	(MH), a widely used commercial antiviral agent. Eugenol application stimulated the
38	production of endogenous nitric oxide (NO) and salicylic acid (SA) in tomato plants.
39	The full-length cDNA of <i>SlPer1</i> , which has been suggested to be a host R gene
40	specific to TYLCV, was isolated from tomato plants. A sequence analysis suggested
41	that SIPer1 might be a nucleobase-ascorbate transporter (NAT) belonging to the
42	permease family. The transcript levels of SlPer1 increased markedly in response to
43	treatment with eugenol or TYLCV inoculation. The results of this study also showed
44	that SlPer1 expression was strongly induced by SA, MeJA (jasmonic acid methyl
45	ester), and NO. Thus, we propose that the increased transcription of SlPer1
46	contributed to the high anti-TYLCV efficiency of eugenol, which might involve in the
47	generation of endogenous SA and NO. Such findings provide the basis for the
48	development of eugenol as an environmental-friendly agricultural antiviral agent.
49	Keywords: Eugenol; Nitric oxide; Permease; Salicylic acid; TYLCV
50	

51

Page 3 of 44

52 Introduction

53	Tomato yellow leaf curl virus (TYLCV) is emerging as one of the major threats to
54	crop production worldwide because it can infect many important agricultural
55	dicotyledonous crop plants, such as tomato, common bean, cowpea, pepper, eggplant,
56	squash, and Acalypha australis [1-6]. TYLCV, which belongs to the genus
57	Begomovirus, was first found in Middle East, but has spread rapidly around the world
58	[7]. In recent years, TYLCV disease outbreaks have occurred in a large area of China,
59	and have severely damaged tomato production [8]. Given that several TYLCV
60	resistance loci have been identified from wild tomato species [9-12], breeding of
61	TYLCV-resistant cultivars provides a promising approach to control this disease.
62	However, this breeding strategy is time-consuming. In addition, some domestic
63	cultivars with a high and stable resistance to TYLCV have been obtained through
64	introgressing resistance traits. However, these cultivars have shown unsatisfactory
65	horticultural quality, which limits their cultivation under many production and
66	climatic conditions, and limits their market appeal [13,14]. Therefore, there is a need
67	for an integrated strategy for the management of TYLCV. Unlike fungi and bacteria,
68	viruses are difficult to kill using direct application methods. The best approach for
69	controlling a virus disease is to enhance the intrinsic antiviral immunity in host plants
70	[15]. Various chemicals have been reported to induce plant immunity [16,17].
71	Therefore, mining for specific exogenous inducers that are able to trigger plant
72	immunity against TYLCV represents an efficient alternative for controlling TYLCV
73	disease.

74	The identification of TYLCV-resistant mechanisms provides an important basis for
75	research on chemical-induced resistance to this pathogen. Among the five major
76	resistant loci (Ty-1, Ty-2, Ty-3, Ty-4, and Ty-5) [9,18,19], only Ty-1 and Ty-3 had been
77	identified as alleles encoding DFDGD-class RNA-dependent RNA polymerases [10].
78	A reverse genetics approach that compared cDNA libraries of TYLCV-resistant and
79	-susceptible tomato cultivars revealed a series of tomato genes that were preferentially
80	expressed in resistant cultivars upon TYLCV infection [20]. Three of those genes,
81	permease I-like protein, hexose transporter (LeHT1), and lipocalin-like protein
82	(SlVRSLip) were subsequently identified as TYLCV-resistant genes, because plants in
83	which these genes were silenced lost their resistance to TYLCV [20-23]. These three
84	genes seem to confer TYLCV resistance independently [22]. Plant immune responses
85	against viruses involve basic resistance mediated by several important plant hormones,
86	such as salicylic acid (SA), jasmonic acid (JA), and nitric oxide (NO) [15].
87	Transcriptome analyses revealed that TYLCV-resistant cultivars had activated SA
88	biosynthesis and repressed JA-dependent signaling pathways [11,24].
89	Eugenol (4-allyl-2-methoxyphenol) is a natural plant-derived compound that has
90	been shown to have anti-fungal, anti-bacterial, and anti-insect activities in
91	pharmacological and food-protection studies [25,26]. A recent study showed that
92	eugenol also inhibits the growth of plant pathogenic fungi [27]. In addition, eugenol
93	exhibits antidiarrheal activity, which is attributed to its ability to inhibit the
94	Ca ²⁺ -activated Cl ⁻ channel, and anti-colon cancer activity, which is attributed to its
95	apoptosis-inducing activity in mammalian cells [28,29]. However, the mechanisms by

96	which eugenol modulates plant immunity and functions as an anti-viral agent remain
97	unclear. In the present study, we investigated the anti-viral activity of eugenol against
98	TYLCV. We explored the possible anti-viral mechanism of eugenol by evaluating its
99	ability to regulate hormones and induce expression of permease I-like protein (also
100	known as <i>SlPer1</i>).

101

102 Materials and methods

103 Plant cultivation

104 Tomato (Solanum lycopersicum, Suhong2003 wild type) seeds were surface-sterilized

105 with 1% NaClO for 10 min and then washed with distilled water. Seeds were

106 germinated in dark for 12 h in Petri dishes on filter papers moistened with distilled

107 water. Then, the germinated seeds were transferred into potting mix in pots and grown

in a greenhouse under the following conditions: 12-h light/12-h dark photoperiod with

109 photosynthetic active radiation of 200 mmol $m^{-2} s^{-1}$, at 25±1 °C.

110 Agro-inoculation of plants with infectious TYLCV clone

111 The Agrobacterium tumefaciens strain EHA105 with an infectious clone of TYLCV

112 (PTYj01) was provided by the Institute of Plant Protection, Jiangsu Academy of

113 Agricultural Sciences, China. Agrobacteria cells were cultured in YEP medium

114 containing 50 mg L^{-1} of kanamycin and 50 mg L^{-1} of rifampicin at 28 °C with shaking

at 150 rpm. Tomato plants with 4–5 leaves were selected for TYLCV inoculation.

116 Agrobacterium cultures with OD₆₀₀ 0.6–0.8 were injected into the stems of tomato

117 plants [30].

118 Chemicals and treatments

Eugenol at different concentrations (50, 100, and 200 μ g mL⁻¹) was sprayed evenly 119 120 onto both sides of tomato leaves 24 h before TYLCV inoculation. Control plants were 121 sprayed with distilled water. The commercial antiviral agent moroxydine hydrochloride (MH) was sprayed at 450 μ g mL⁻¹ as a positive control. 122 For chemical response analyses, tomato shoots were sprayed with 50 µM 123 124 gibberellin, 200 μ M SA, 100 μ M ethephon (an ethylene-releasing compound), 100 125 μ M MeJA (jasmonic acid methyl ester), 200 μ M SNP (sodium nitroprusside, an NO 126 donor), or 200 μ M NaHS (sodium hydrogen sulfide, a hydrogen sulfide (H₂S) donor). 127 After various treatments, plant samples were harvested at indicated times for analyses.

128 Identification of TYLCV infection in tomato plants

- 129 Symptoms were evaluated according to the visual symptom-severity scale described
- by García-Cano et al. [31] in which 0, 1, 2, 3, 4, and 5 represent no visible symptoms,
- 131 20%, 40%, 60%, 80%, and 100% of plants showing symptoms, respectively. The
- 132 disease index (DI) was calculated as follows:
- 133 DI (%) = Σ (scale no. × no. of plants at corresponding disease scale) × 100/
- 134 (highest scale \times no. of total tested plants)
- 135 The control efficiency (%) of eugenol was calculated as follows:

136 Control efficiency (%) =
$$(C_{di}-T_{di}) \times 100/C_{di}$$

- 137 where C_{di} is the mean value of the DI of TYLCV-infected plants sprayed with distilled
- 138 water, and T_{di} is the mean DI of TYLCV-infected plants sprayed with eugenol.
- 139 Semi-quantitative RT-PCR was used to determine the transcript levels of three viral
- 140 genes, capsid protein (CP), replication initiator protein (Rep), and replication
- 141 enhancer protein (Ren). Total RNA was extracted from shoot tissues using Trizol

- 142 (Invitrogen, Carlsbad, CA, USA) according to the manufacturer's instructions.
- 143 Reverse transcription was performed at 42°C in a 25-µL reaction mixture containing 3
- μg RNA, 0.5 μg oligo(dT) primers, 12.5 nmol dNTPs, 20 units RNase inhibitor, and
- 145 200 units M-MLV. The first cDNA was used as a template for PCR and to analyze the
- 146 transcript levels of genes. The following primers were used for amplifications: CP,
- 147 sense 5'-CTTATGAGCAACGGGATG-3' and antisense
- 148 5'-CCAAGAAGAACACGACCT-3'; *Rep*, sense 5'-TCTCGGCGACCCACTCTT-3'
- and antisense 5'-GTCAGCAATCTGCCAACG-3'; *Ren*, sense
- 150 5'-CCAAGAAGAACACGACCT-3' and antisense 5'-GCTGTAATGTCGTCCAAA-3';
- 151 Actin, sense 5'-AGAGCTATGAGCTCCCAGATGG-3' and antisense
- 152 5'-TTAATCTTCATGCTGCTAGGAGC-3'.
- 153 To standardize the transcript levels of tested genes, the relative abundance of *Actin*
- 154 was used as an internal standard. First, the PCR product of Actin for each sample was
- loaded onto a 1% (w/v) agarose gel containing ethidium bromide and subjected to
- 156 electrophoresis. Then, the bands were visualized under an ultraviolet transilluminator
- and photographed with a CCD camera. Densitometric scanning was used to quantify
- the signal intensity of each band. The loading cDNA template for each sample was
- 159 quantitatively adjusted according to the signal intensity of the Actin band. Finally, the
- band intensity for the PCR product of the target gene represented the relative mRNA
- 161 abundance of the gene.

162 Cloning of full-length SlPer1 cDNA from tomato plants

- 163 The putative tomato *SlPer1* gene sequence (SGN-U564503) was retrieved from the
- 164 tomato genome database (Sol Genomics Network,
- 165 <u>http://solgenomics.net/organism/Solanum_lycopersicum/genome</u>). This sequence was

166	used to design a pr	imer pair for PC	R (sense 5'-GC	GGTTTGCAGTTTGC	CACCGC-3'
-----	---------------------	------------------	----------------	----------------	-----------

- 167 and antisense 5'-TGCGCACCAATACACAGCTC-3'), which would amplify the entire
- 168 coding region of tomato *SlPer1* cDNA.
- 169 Total RNA extraction and reverse transcription were performed as described above.
- 170 The PCR conditions for amplifying *SlPer1* were as follows: 94°C for 5 min; followed
- by 30 cycles at 94°C for 30 s, 55°C for 30 s, 72°C for 1.5 min, with final extension at
- 172 72°C for 5 min. The PCR product was gel-purified with an AxyPrep Gel DNA
- 173 Extraction Kit (Axygen, Hangzhou, China) according to the manufacturer's protocol.
- 174 Then, the purified PCR product was cloned into the pMD 19-T vector (TaKaRa, Otsu,
- 175 Japan) for sequencing (Invitrogen, Shanghai, China).
- 176 We conducted RT-PCR to analyze the transcript levels of *SlPer1* in tomato plants
- 177 under various treatment conditions. Total RNA extraction and reverse transcription
- 178 were performed as described above. A 202-bp fragment within the coding region of
- 179 *SlPer1* was amplified using the following primers: sense
- 180 5'-TTAACGTGCCATTCTCATCG-3' and antisense
- 181 5'-CACACGGATGGGAAATACTT-3'. To standardize the transcript levels of *SlPer1*,
- 182 the relative abundance of *Actin* was used as an internal standard.
- 183 Bioinformatics analysis
- 184 The open reading frame (ORF) was analyzed using the online tool ORF Finder at
- 185 <u>http://www.ncbi.nlm.nih.gov/gorf/gorf.html</u>. Then, DNA sequences 2-kb in length
- 186 from the region upstream of *SlPer1* were retrieved to analyze *cis*-elements using the
- 187 online tool PLACE at <u>http://www.dna.affrc.go.jp/PLACE/signalscan.html</u> [32].
- 188 Analyses of the chemical and physical properties of the protein were performed by

189	ProtParam at http://web.expasy.org/protparam/ [33]. Protein structure prediction was
190	performed by SMART at http://smart.embl-heidelberg.de/ [34]. The protein
191	subcellular location was predicted by WoLF PSORT at http://wolfpsort.org/ [35]. The
192	analysis of transmembrane regions of the protein was performed using the TMHMM
193	tool at http://www.cbs.dtu.dk/services/TMHMM-2.0 [36]. Multiple alignment of
194	amino acid sequences of the tested proteins was conducted by using CLUSTALX 2.0
195	software [37]. The phylogenetic trees were constructed using the maximum likelihood
196	method in MEGA6 [38].
197	All the sequences analyzed in the present study were obtained from BRAD
198	(Brassica database; http://brassicadb.org/brad/index.php) or NCBI (National Center
199	for Biotechnology Information) (<u>http://www.ncbi.nlm.nih.gov/</u>). The following
200	sequences were obtained from BRAD: Bra013170 for Brassica rapa
201	nucleobase-ascorbate transporter 1 (BrNAT1), Bra005445 for B. rapa NAT2
202	(BrNAT2), Bra000543 for B. rapa NAT3 (BrNAT3), Bra014228 for B. rapa NAT4
203	(BrNAT4), Bra037944 for B. rapa NAT5 (BrNAT5), Bra010129 for B. rapa NAT6A
204	(BrNAT6A), Bra035875 for B. rapa NAT6B (BrNAT6B), Bra029239 for B. rapa
205	NAT6C (BrNAT6C), Bra035409 for B. rapa NAT7 (BrNAT7), Bra036544 for B. rapa
206	NAT10A (BrNAT10A), Bra009839 for B. rapa NAT10B (BrNAT10B), Bra011804 for
207	B. rapa NAT11 (BrNAT11), Bra034371 for B. rapa NAT12A (BrNAT12A),
208	Bra011995 for B. rapa NAT12B (BrNAT12B). The following sequences were
209	obtained from NCBI: NP_178636.1 for Arabidopsis thaliana NAT1 (AtNAT1),
210	NP_180966.1 for A. thaliana NAT2 (AtNAT2), NP_180219.1 for A. thaliana NAT3

211	(AtNAT3), NP	175418.1 for A.	thaliana NAT4	(AtNAT4), NP	199810.2 for <i>A</i> .
-----	--------------	-----------------	---------------	--------------	-------------------------

- 212 thaliana NAT5 (AtNAT5), NP_201094.1 for A. thaliana NAT6 (AtNAT6),
- 213 NP_176211.2 for A. thaliana NAT7 (AtNAT7), NP_172524.1 for A. thaliana NAT8
- 214 (AtNAT8), NP_197924.1 for A. thaliana NAT9 (AtNAT9), NP_176733.2 for A.
- 215 thaliana NAT10 (AtNAT10), NP_195518.2 for A. thaliana NAT11 (AtNAT11),
- 216 NP_850108.1 for A. thaliana NAT12 (AtNAT12), and NP_001061818.1 for Oryza
- 217 sativa NAT6 (OsNAT6).
- 218 Histochemical detection of endogenous NO in tomato plants
- 219 Intracellular NO was visualized using the fluorescent probe DAF-FM DA (3-amino,
- 4-aminomethyl-2',7'- difluorescein diacetate) as described by Guo et al [39]. Root
- and stem samples from eugenol-treated plants were incubated in 20 mM HEPES
- 222 [4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid]-NaOH buffer solution (pH 7.5)
- 223 containing 15 μM DAF-FM DA at 25°C for 15 min in the dark. The roots were rinsed
- with distilled water three times and then visualized under a fluorescence microscope
- 225 (ECLIPSE, TE2000-S, Nikon, Tokyo, Japan) (excitation 490 nm and emission 525
- nm). The relative fluorescence density of the images was analyzed using Image-Pro
- 227 Plus 6.0 (Media Cybernetics Inc., Silver Spring, MD, USA).

228 Determination of endogenous SA in tomato plants

- 229 The concentration of SA in plant leaves was determined by using a Plant SA ELISA
- 230 Kit (Shanghai Jianglai Bioengineering Institute Co., Ltd., Shanghai, China) according
- to the manufacturer's instructions. Briefly, 1 g leaf tissue was homogenized in 10 mL

232	ice-cold phosphate buffer (50 mM, pH 7.4). The homogenate was centrifuged at 3,000
233	g for 20 min at 4°C. The supernatant was used for determination of SA. A 10- μ L
234	aliquot of the sample was mixed with 40 μL sample dilution and then added to a well
235	in a plate embedded with HRP (horse radish peroxidase)-labeled SA antibody. Then,
236	the plate was incubated at 37°C for 30 min followed by washing and drying. The
237	substrate TMB (3,3',5,5'-tetramethylbenzidine), which reacts with HRP to form a blue
238	product, was added to each well, and the plate was incubated in the dark at 37°C for
239	15 min. The reaction was terminated by adding sulphuric acid. The color change was
240	measured spectrophotometrically at 450 nm with a Mithras LB 940 Multimode
241	Reader (Berthold, Germany). The concentration of SA in the samples was determined
242	by comparing the OD_{450nm} of the samples to an SA standard curve.
243	Ouantification of virus

243 Quantification of virus

244 The virus was quantified as described elsewhere [40,41], with minor changes.

245 Genomic DNA was extracted from TYLCV-infected plant leaves using an EaxyPure

- 246 Plant Genomic DNA Kit (Transgene Biotech, Beijing, China) according to the
- 247 manufacturer's instructions. The concentration of DNA was determined by
- 248 spectrophotometric analysis (NanoVueTm Plus, GE Healthcare). The integrity of DNA
- samples was assessed by agarose gel electrophoresis.
- 250 Quantitative real-time PCR (qPCR) was performed using an Applied Biosystems
- 251 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). The
- amplification was performed using an SYBR[®] Premix Ex Taq[™] (TIi RNaseH Plus)

253	qPCR Kit (Takara Bio, Dalian, China) according to the manufacturer's instructions.
254	The primers used to amplify CP genes, as described above, were used to perform
255	qPCR. The qPCR procedure was as follows: initial denaturation at 95°C for 30 s,
256	followed by 40 cycles of 95°C for 5 s, 60°C for 30 s, and 72°C for 30 s. Data were
257	collected and analyzed by using ABI 7500 software (v. 2.0.6, Applied Biosystems).
258	The threshold cycle (C_t) was determined as the cycle number with the detection of a
259	significant increase in reporter fluorescence. To develop a standard curve for
260	quantifying the number of TYLCV copies in infected tomato leaves, a plasmid
261	(pGMT) containing the pure full-length TYLCV genome was prepared for qRT-PCR
262	and calculations, based on the methods described by Mason et al. [40].
263	Statistical analysis
264	Data shown are mean ± standard deviation (SD) of at least three replicated
265	measurements. Significant differences between treatments were statistically evaluated
266	by SD and one-way analysis of variance (ANOVA) using SPSS 2.0. Two specific
267	different treatments were compared statistically by ANOVA, followed by F-test if the
268	ANOVA result was significant at $P < 0.05$. For multiple comparison analyses, least
269	significant difference test (LSD) was performed on all data after ANOVA when
270	significant differences ($P < 0.05$) were detected among different treatments.

271 **Results**

272 Eugenol significantly protected tomato plants against TYLCV infection

273 In China, MH is a widely used anti-viral agent for controlling viral diseases of

274	vegetables [42]. In the present study, the control efficiency of MH against TYLCV
275	was 53.8% (Fig. 1A), which was lower than that of eugenol (controlling efficiency of
276	eugenol at 200 μ g mL ⁻¹ was 77.4%). Eugenol remarkably attenuated the
277	TYLCV-induced disease symptoms, such as leaf yellowing, leaf curling, and growth
278	stunting (Fig. 1A, B). The TYLCV infection was verified by the detection of
279	transcripts of three viral genes (CP, Rep, and Ren) in leaves (Fig. 1C). Treatment with
280	eugenol at 200 μ g mL ⁻¹ effectively decreased the transcript levels of these virus genes
281	(Fig. 1C), suggesting that viral replication was inhibited in eugenol-treated plants. In
282	addition, eugenol treatment led to marked decreases in virus titer in the young leaves
283	of TYLCV-infected plants (Fig. 1D).
284	Cloning and sequence analysis of cDNA encoding SlPer1
285	The full-length cDNA sequence of <i>SlPer1</i> was isolated from tomato leaves using an
286	RT-PCR-based strategy. The entire ORF of SlPer1 cDNA was 1725-bp long, and
287	encoded a protein of 574 amino acid (aa) residues with a predicted molecular mass of
288	62.4 KDa and a theoretical isoelectric point of 9.38. The results of online BLAST
289	analyses indicated that SIPer1 showed high similarities with plant NATs
290	(nucleobase-ascorbate transporters). The polygenetic analysis indicated that SIPer1

was in a subgroup with NAT5 and NAT6 from *A. thaliana* and *B. rapa*, respectively

292 (Fig. 2).

293 SIPer1 was predicted to have 11 transmembrane domains, and it contained a

294 Xan_ur_permease conserved domain (from 31–437 aa), which is a characteristic of

- the permease family (Fig. 3). This family includes NATs, which function in the
- transport of diverse substrates such as xanthine, uracil, nucleobase, and ascorbate. It

297	has been suggested that NAT family members can be recognized by the NAT
298	signature motif, (Q/E/P)-N-X-G-X-X-X-T-(R/K/G) [43]. A typical NAT motif was
299	detected in the peptide sequence of SIPer1: <u>ENVGLLALTR</u> located from $344 - 353$
300	aa (Fig. 3B).
301	The analysis of <i>cis</i> -elements suggested that there were several kinds of
302	disease-responsive elements in the promoter region of SlPer1, including two
303	elicitor-responsive elements, five SA-responsive elements, and one JA-responsive
304	element (Table 1).
305	Transcription of SlPer1 was stimulated by TYLCV and eugenol
306	The transcriptional pattern of SlPer1 was monitored in tomato leaves after inoculation
307	with TYLCV. Compared with mock-inoculated plants, those infected with TYLCV
308	showed 58%, 70%, and 91% increases in SlPer1 transcript levels in their infected
309	leaves at 7, 14, and 21 dpi, respectively (Fig. 4A, B). Next, we investigated the effect
310	of eugenol on the transcription of SlPer1. Compared with the control, the plants
311	treated with eugenol at 100 and 200 $\mu g \; m L^{\text{-1}}$ showed 408% and 289% increases,
312	respectively, in SlPer1 transcript levels in the leaves (Fig. 4C, D).
313	Transcriptional patterns of SlPer1 in response to plant hormones
314	The transcript levels of SlPer1 in tomato leaves were analyzed in plants treated with

315 well-known plant hormones. The results of time-course experiments showed that the

- transcription of *SlPer1* was regulated differentially by plant hormones (Fig. 5). Both
- 317 SA and MeJA induced *SlPer1* transcription. The maximal induction of *SlPer1* by SA

318	and MeJA was at 12 h and 1 h after treatments, respectively (Fig. 5A-C). However,
319	both gibberellin and ethephon inhibited SlPer1 transcription in tomato leaves (Fig. 5A,
320	D, E).
321	Next, we investigated the response of <i>SIPer1</i> transcription to SNP (an NO donor)
322	and NaHS (an H ₂ S donor) (Fig. 6). The transcription of <i>SlPer1</i> was induced by both
323	of these chemicals. The maximal induction of <i>SlPer1</i> by SNP and NaHS was at 24 h
324	after treatment (Fig. 6).
325 326	Eugenol induced accumulation of endogenous NO and SA in tomato plants
327	The NO-specific fluorescent probe DCF-FM DA was used to analyze the effect of
328	eugenol on endogenous NO accumulation in tomato plants. Compared with the
329	control, plants treated with eugenol at 200 μ g mL ⁻¹ showed a significant increase in
330	endogenous NO accumulation in both roots and stems (Fig. 7). Additionally, eugenol
331	treatments resulted in significantly increased SA concentrations in tomato leaves in a
332	time-dependent manner (Fig. 8). Compared with the control, the plants treated with
333	eugenol for 96 h showed a 128% increase in the SA concentration in leaves (Fig. 8).
334	Discussion
335	TYLCV disease has become one of the biggest threats to agricultural production
336	because of the inefficiency of the current control strategies. Here, we demonstrated
337	that a plant-derived compound, eugenol, exhibits great potential to trigger plant
338	immune responses. Thus, eugenol may be used as an environmental friendly anti-viral

339	agent to control TYLCV disease. The anti-TYLCV activity of eugenol may result
340	from the induction of the expression of a specific R gene, $SlPer1$, in tomato plants.
341	Additionally, NO and SA may mediate the eugenol-induced expression of <i>SlPer1</i> .
342	Plant activators are agrochemicals that confer disease resistance upon crops by
343	activating plant immunity. Consequently, these compounds have attracted much
344	attention worldwide [44,45]. Traditional plant activators include peptides (also called
345	elicitors) and chitosan, which act as primers of plant immunity [46,47]. However,
346	agrochemical-derived plant activators with relatively simple structures have proven to
347	be more durable in the field, compared with peptides or chitosan, because they are not
348	pathogen-specific [16]. Several recent studies have suggested that the main function
349	of plant immune-activating agrochemicals is to activate the free SA pool in host plants
350	[16,48]. In the present study, two lines of evidence suggested that eugenol might be a
351	novel plant immune-priming agrochemical. First, eugenol induced the accumulation
352	of SA in host tomato plants. Second, treatment with eugenol before virus inoculation
353	reduced the severity of TYLCV disease symptoms in tomato plants. These results
354	indicated that eugenol-primed immunity conferred resistance to subsequent viral
355	attack. Given that most plant activators are synthetic molecules [16,48-51], their
356	toxicities are unknown. Eugenol is a naturally plant derived compound that has been
357	widely used as a food additive and medicine [25,26]. According to the official report
358	from the United States Environmental Protection Agency (EPA), eugenol has minimal
359	potential toxicity and poses minimal risks to humans and the environment. Eugenol is
360	included on the list of pesticides that are exempt from all provisions of the FIFRA

361	(Federal Insecticide, Fungicide and Rodenticide Act) when intended for continued use
362	[52,53]. Therefore, eugenol has great potential to be developed as an environmentally
363	friendly pesticide to control virus diseases.
364	The role of <i>SlPer1</i> in the response to TYLCV infection was first reported by
365	Eybishtz et al., who found that TYLCV resistance could be abolished by
366	VIGS-mediated silencing of SlPer1 in a resistant cultivar [20]. SlPer1 encodes a
367	permease in the NAT family, whose members transport various macromolecules
368	including xanthine, uric acid, purines, and ascorbate. Ascorbate synthesized on the
369	inner mitochondrial membrane can be transported by NATs to different cellular
370	compartments, including the apoplast [54]. Ascorbate in the apoplast is essential for
371	the deposition of callose in plasmodesmata [55], which is important for host plants to
372	limit the cell-to-cell movement of the virus [56]. This is consistent with the view that
373	SlPer1 may be involved in transporting macromolecules or small signaling
374	metabolites underlying virus resistance [20].
375	Eybishtz et al. [20] reported that SlPer1 was preferentially expressed in a
376	TYLCV-resistant cultivar (line 902) as compared to a TYLCV-susceptible cultivar
377	(line 906-4). These authors found that the transcription of SlPer1 was barely detected
378	in line 906-4, even after 35 PCR cycles [20]. In the present study, we detected SlPer1
379	PCR products in untreated tomato plant samples after 30 PCR cycles (Fig. 4). Both
380	line 906-4 and the cultivar used in the present study were susceptible to TYLCV
381	infection, but the discrepancy in the basic expression level of SlPer1 may result from
382	the different genetic backgrounds of the two cultivars. A comparison of the sequences

383	of SlPer1 and its promoter region between susceptible and resistant genotypes may
384	provide alternative explanations for differences in SlPer1 transcription in different
385	genetic backgrounds [20]. It has been suggested that SlPer1 functions at an early stage
386	of events leading to TYLCV resistance, probably by restricting virus entry and
387	replication in resistant cultivars. In the present study, inoculation with TYLCV for
388	7–21 days resulted in 58% – 91% increases in the transcript levels of <i>SlPer1</i> (Fig. 4B).
389	However, treatment with eugenol for only 1 day led to a four-fold increase in the
390	relative expression level of SlPer1 (Fig. 4D), similar to the rapid increase (six-fold
391	change at 3 dpi) in <i>SlPer1</i> expression reported for a resistant cultivar (line 902) upon
392	TYLCV infection [20]. A pretreatment with eugenol before TYLCV inoculation
393	alleviated the disease symptoms (Fig. 1). Overall, these data suggested that
394	eugenol-induced resistance to TYLCV is related to the rapidly enhanced transcription
394 395	eugenol-induced resistance to TYLCV is related to the rapidly enhanced transcription of <i>SlPer1</i> .
395	of SlPer1.
395 396	of <i>SlPer1</i> . In plants, SA is a multifaceted hormone involved in combating diseases caused by
395 396 397	of <i>SIPer1</i> . In plants, SA is a multifaceted hormone involved in combating diseases caused by multiple pathogens, including viruses [57]. The results of metabolomic and
395 396 397 398	of <i>SIPer1</i> . In plants, SA is a multifaceted hormone involved in combating diseases caused by multiple pathogens, including viruses [57]. The results of metabolomic and transcriptomic studies have highlighted the differentially regulated pathways,
395 396 397 398 399	of <i>SIPer1</i> . In plants, SA is a multifaceted hormone involved in combating diseases caused by multiple pathogens, including viruses [57]. The results of metabolomic and transcriptomic studies have highlighted the differentially regulated pathways, including the SA biosynthetic pathway, between resistant and susceptible plants upon
 395 396 397 398 399 400 	of <i>SIPer1</i> . In plants, SA is a multifaceted hormone involved in combating diseases caused by multiple pathogens, including viruses [57]. The results of metabolomic and transcriptomic studies have highlighted the differentially regulated pathways, including the SA biosynthetic pathway, between resistant and susceptible plants upon TYLCV infection [24]. Activated SA accumulation and the transcription of genes
 395 396 397 398 399 400 401 	of <i>SIPer1</i> . In plants, SA is a multifaceted hormone involved in combating diseases caused by multiple pathogens, including viruses [57]. The results of metabolomic and transcriptomic studies have highlighted the differentially regulated pathways, including the SA biosynthetic pathway, between resistant and susceptible plants upon TYLCV infection [24]. Activated SA accumulation and the transcription of genes related to SA biosynthesis have been observed in resistant plants in response to

405	TYLCV (Fig. 4D and 8). Eugenol stimulated generation of endogenous SA; therefore,
406	SA might mediate eugenol-induced expression of SlPer1. Crosstalk between NO and
407	SA has been demonstrated to be vital for host plants to combat disease [57]. Based on
408	our current results, NO may also mediate eugenol-induced up-regulation of SlPer1.
409	However, further research is required to determine how eugenol induces the
410	expression of <i>SlPer1</i> by regulating the interplay between SA and NO.
411	In plants, JA and its derivative MeJA play important roles in regulating signaling
412	responses to various biotic stresses [58]. Antagonism between SA and JA defensive
413	signaling frequently occurs upon infection by pathogens, including viruses [58,59].
414	For instance, SA strongly inhibits JA-dependent defense pathways in Nicotiana
415	tabacum in response to tobacco mosaic virus (TMV), an RNA virus [60]. A key
416	component of the SA signaling pathway, NPR1 (nonexpressor of pathogenesis-related
417	genes 1), suppresses the JA signaling pathway [59]. Our previous study indicated that
418	eugenol enhanced TMV resistance by inducing SA accumulation and
419	up-regulatingNPR1 expression in N. tabacum, suggesting that eugenol may suppress
420	the JA-dependent signaling pathway [61]. Metabolomics analyses showed that
421	TYLCV-resistant plants accumulated high levels of hydroxyjasmonic acid, a
422	commonly occurring metabolite of JA that negatively regulates JA signaling [24, 62].
423	Considering that both TYLCV and eugenol activated SA biosynthesis, it is possible
424	that eugenol may confer TYLCV resistance by differentially regulating SA- and
425	JA-dependent defensive signaling pathways. In addition, we identified JA-responsive
426	elements in the promoter region of SlPer1, which may explain why exogenous MeJA

427	is able to induce SlPer1 expression. A recent study suggested that SA and JA act
428	synergistically to trigger systemic resistance against TMV [63]. Therefore, we
429	speculated that eugenol may induce SlPer1 expression by coordinating synergistic
430	cross-talk between SA and JA. This should be verified by conducting further research
431	on the anti-viral mechanism of eugenol against DNA and RNA viruses.
432	Recent studies have suggested that H ₂ S may be a novel gaseous messenger
433	modulating defense responses in plants [64]. Research on the biological role of H_2S in
434	plants is just beginning, but cross-talk between H_2S and NO has been shown to
435	regulate various physiological processes in tomato [65]. In the present study, the
436	transcription of the tomato R gene <i>SlPer1</i> was strongly induced by the H ₂ S donor
437	NaHS. Therefore, the role of H ₂ S in eugenol-induced expression of <i>SlPer1</i> in tomato
438	plants to provide resistance against TYLCV would be an interesting topic for further
439	research.

440

441 Conclusions

The results of this study indicated that eugenol shows great potential to stimulate plant immune responses against TYLCV attack. In addition to the general indicators of defensive responses, such as the increases in SA and NO, eugenol stimulated the expression of a specific host *R* gene, *SlPer1*, against TYLCV. The mechanisms by which eugenol induces *SlPer1* expression are still unknown, but our data indicated that SA and NO may play important roles in this process. Further work is required to

- identify and characterize the eugenol-induced resistance network against TYLCV.
- 449 Such analyses would provide a valuable basis for developing eugenol as a novel
- 450 environmentally friendly plant activator.
- 451

452 Acknowledgements

- 453 This work was supported by the Natural Science Foundation of Jiangsu Province,
- 454 China (BK20130703), National Natural Science Foundation of China (21207054),
- and the Hi-Tech Research and Development Program of China (2011AA10A202). We
- 456 thank Dr. Yinghua Ji (Institute for Plant Protection, Jiangsu Academy of Agricultural
- 457 Sciences) for providing A. tumefaciens strain EHA105. We also thank Dr. Neng Yi
- 458 (Institute of Agricultural Resources and Environment, Jiangsu Academy of
- 459 Agricultural Sciences) for helping with virus quantification. We thank Dr. Fengxiang
- 460 X. Han (Jackson State University) for language assistance.
- 461

462 **References**

- 463 [1] Dai FM, Zeng R, Chen WJ, Lu JP. First report of tomato yellow leaf curl virus
- 464 infecting cowpea in China. Plant Dis 2010;95:362.
- 465 [2] Ji YH, Zhang H, Zhang K, Li G, Lian S, Cheng ZB, et al. First report of tomato
- 466 yellow leaf curl virus in *Acalypha australis* in China. Plant Dis 2013;97:430.
- 467 [3] Shahid MS, Natsuaki KT. Identification of tomato yellow leaf curl virus naturally

- 468 infecting Common bean in Japan. Plant Dis 2014.
- 469 [4] Zubiaur YM, Fonseca D, Quiñones M, Palenzuela I. Presence of tomato yellow
- 470 leaf curl virus infecting squash (*Curcubita pepo*) in Cuba. Plant Dis 2004;88:572.
- 471 [5] Salati R, Shorey M, Briggs A, Calderon J, Rojas MR, Chen LF, et al. First report
- 472 of tomato yellow leaf curl virus infecting tomato, tomatillo, and peppers in Guatemala.
- 473 Plant Dis 2010;94:482.
- 474 [6] Tang YF, He ZF, Du ZG, Lu LH. First report of tomato yellow leaf curl
- 475 Kanchanaburi virus infecting eggplant in Laos. Plant Dis 2013;98:428.
- 476 [7] Lefeuvre P, Martin DP, Harkins G, Lemey P, Gray AJA, Meredith S, et al. The
- 477 spread of tomato yellow leaf curl virus from the Middle East to the world. PLoS
- 478 Pathog 2010;6:e1001164.
- 479 [8] Zhang H, Gong H, Zhou X. Molecular characterization and pathogenicity of
- tomato yellow leaf curl virus in China. Virus Genes 2009;39:249-55.
- 481 [9] Ji Y, Scott JW, Schuster DJ, Maxwell DP. Molecular Mapping of *Ty-4*, a new
- tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. J Am Soc
- 483 Hortic Sci 2009;134:281-8.
- 484 [10] Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RGF, Scott JW, et al.
- 485 The tomato yellow leaf curl virus resistance fenes *Ty-1* and *Ty-3* are allelic and code
- 486 for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet 2013;9:e1003399.
- 487 [11] Chen T, Lv Y, Zhao T, Li N, Yang Y, Yu W, et al. Comparative transcriptome
- 488 profiling of a resistant vs. susceptible tomato (*Solanum lycopersicum*) cultivar in
- response to infection by tomato yellow leaf curl virus. PLoS ONE 2013;8:e80816.

490	[12] Ji Y, Scott JW, Schuster DJ.	Toward fine mapping of the tomato	<i>yellow leaf curl</i>

- 491 *virus* resistance gene *Ty-2* on chromosome 11 of tomato. Hortscience 2009;44:614-8.
- 492 [13] Polston J, Lapidot M. Management of Tomato yellow leaf curl virus: US and
- 493 Israel Perspectives. In: Czosnek H, editors. Tomato Yellow Leaf Curl Virus Disease,
- 494 Springer Netherlands; 2007, p. 251-62.
- 495 [14] Antignus Y. The management of Tomato yellow Leaf Curl Virus in Greenhouses
- 496 and the Open Field, a Strategy of Manipulation. In: Czosnek H, editors. Tomato
- 497 Yellow Leaf Curl Virus Disease, Springer Netherlands; 2007, p. 263-78.
- 498 [15] Mandadi KK, Scholthof K-BG. Plant immune responses against viruses: How
- does a virus cause disease? Plant Cell 2013;25:1489-505.
- 500 [16] Noutoshi Y, Okazaki M, Kida T, Nishina Y, Morishita Y, Ogawa T, et al. Novel
- 501 plant immune-priming compounds identified via high-throughput chemical screening
- target salicylic acid glucosyltransferases in Arabidopsis. Plant Cell 2012;24:3795-804.
- 503 [17] Liu T, Liu Z, Song C, Hu Y, Han Z, She J, et al. Chitin-induced dimerization
- activates a plant immune receptor. Science 2012;336:1160-4.
- 505 [18] Ji Y, Scott J, Hanson P, Graham E, Maxwell D. Sources of Resistance, Inheritance,
- and Location of Genetic Loci Conferring Resistance to Members of the
- 507 Tomato-Infecting Begomoviruses. In: Czosnek H, editors. Tomato Yellow Leaf Curl
- 508 Virus Disease, Springer Netherlands; 2007, p. 343-62.
- 509 [19] Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, et al. Molecular
- 510 dissection of *Tomato leaf curl virus* resistance in tomato line TY172 derived from
- 511 Solanum peruvianum. Theor Appl Genet 2009;119:519-30.

- 512 [20] Eybishtz A, Peretz Y, Sade D, Akad F, Czosnek H. Silencing of a single gene in
- 513 tomato plants resistant to *Tomato yellow leaf curl virus* renders them susceptible to the
- 514 virus. Plant Mol Biol 2009;71:157-71.
- 515 [21] Eybishtz A, Peretz Y, Sade D, Gorovits R, Czosnek H. Tomato yellow leaf curl
- 516 *virus* infection of a resistant tomato line with a silenced sucrose transporter gene
- 517 LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis. Planta
- 518 2010;231:537-48.
- 519 [22] Sade D, Eybishtz A, Gorovits R, Sobol I, Czosnek H. A developmentally
- 520 regulated lipocalin-like gene is overexpressed in *Tomato yellow leaf curl*
- 521 virus-resistant tomato plants upon virus inoculation, and its silencing abolishes
- resistance. Plant Mol Biol 2012;80:273-87.
- 523 [23] Sade D, Brotman Y, Eybishtz A, Cuadros-Inostroza Á, Fernie AR, Willmitzer L,
- 524 et al. Involvement of the hexose transporter gene *LeHT1* and of sugars in resistance of
- 525 tomato to *Tomato yellow leaf curl virus*. Molecular Plant 2013;6:1707-10.
- 526 [24] Sade D, Shriki O, Cuadros-Inostroza A, Tohge T, Semel Y, Haviv Y, et al.
- 527 Comparative metabolomics and transcriptomics of plant response to *Tomato yellow*
- 528 *leaf curl virus* infection in resistant and susceptible tomato cultivars. Metabolomics
- 529 2015;11:81-97.
- 530 [25] Kamatou GP, Vermaak I, Viljoen AM. Eugenol-from the remote Maluku Islands
- to the international market place: a review of a remarkable and versatile molecule.
- 532 Molecules 2012;17:6953-81.
- 533 [26]Kong X, Liu X, Li J, Yang Y. Advances in pharmacological research of eugenol.

- 534 Curr Opin Complement Alternat Med 2014;1:8-11.
- 535 [27] Morcia C, Malnati M, Terzi V. In vitro antifungal activity of terpinen-4-ol,
- eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxigenic plant
- 537 pathogens. Food Addit Contam Part A 2011;29:415-22.
- 538 [28] Yao Z, Namkung W, Ko EA, Park J, Tradtrantip L, Verkman AS. Fractionation of
- a herbal antidiarrheal medicine reveals eugenol as an Inhibitor of Ca^{2+} -activated Cl^{-}
- 540 channel TMEM16A. PLoS ONE 2012;7:e38030.
- 541 [29] Jaganathan SK, Mazumdar A, Mondhe D, Mandal M. Apoptotic effect of eugenol
- in human colon cancer cell lines. Cell Biol Int 2011;35:607-15.
- 543 [30] Ji YH, Sun HX, Zhou XW, Zhao TM, Yun WG, Zhou YJ, 2011. The identification
- of Tomato yellow leaf curl virus in Jiangsu Province, China, In The 2011 Congrass of
- 545 Chinese Society of Plant Pathology, The 2011 Congrass of Chinese Society of Plant
- 546 Pathology.
- 547 [31] Garcia-Cano E, Navas-Castillo J, Moriones E, Fernandez-Munoz R. Resistance to
- 548 Tomato chlorosis virus in wild tomato species that impair virus accumulation and
- disease symptom expression. Phytopathology 2010;100:582-92.
- 550 [32] Higo K, Ugawa Y, Iwamoto M, Korenage T. Plant cis-acting regulatory DNA
- elements (PLACE) database. Nucleic Acids Res 1999;27:297-300.
- 552 [33] Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, et al.
- 553 Protein identification and analysis tools in the ExPASy server. Methods Mol Biol
- 554 1999;112:531-52.
- 555 [34] Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain

- annotation resource. Nucleic Acids Res 2012;40:D302-5.
- 557 [35] Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, et al.
- 558 WoLF PSORT: protein localization predictor. Nucleic Acids Res 2007;35:W585-7.
- [36] Krogh A, Larsson B, von Heijne G, Sonnhammer E. Predicting transmembrane
- 560 protein topology with a hidden markov model: application to complete genomes. J
- 561 Mol Biol 2001;305:567-80.
- 562 [37] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H,
- tet al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947-8.
- 564 [38] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular
- 565 Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 2013;30:2725-9.
- 566 [39] Guo K, Xia K, Yang ZM. Regulation of tomato lateral root development by
- 567 carbon monoxide and involvement in auxin and nitric oxide. J Exp Bot
- 568 2008;59:3443-52.
- 569 [40] Mason G, Caciagli P, Accotto GP, Noris E. Real-time PCR for the quantitation of
- 570 Tomato yellow leaf curl Sardinia virus in tomato plants and in Bemisia tabaci. J Virol
- 571 Methods 2008;147:282-9.
- 572 [41] Zhou T, Du L, Lan Y, Sun F, Fan Y, Zhou Y. Development of SYBR Green
- 573 I-Based One-Step Real Time RT-PCR Assay for Quantifying Southern rice
- 574 *black-streaked dwarf virus* in Rice. Journal of phytopathology 2014;162:26-32.
- 575 [42] Wen J, Zhang Y, Zeng L. Effect of moroxydine hydrochloride to control tomato
- 576 virus. J Changjiang Vege 2008;11b:68-9.
- 577 [43] Maurino VG, Grube E, Zielinski J, Schild A, Fischer K, Flügge U-I. Identification

578	and expression analysis of twelve members of the nucleobase-ascorbate transporter
579	(NAT) gene family in Arabidopsis thaliana. Plant Cell Physiol 2006;47:1381-93.
580	[44]Knoth C, Salus MS, Girke T, Eulgem T. The synthetic elicitor
581	3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent
582	mechanisms of disease resistance in Arabidopsis. Plant Physiol 2009;150:333-47.
583	[45] Serrano M, Robatzek S, Torres M, Kombrink E, Somssich IE, Robinson M, et al.
584	Chemical interference of pathogen-associated molecular pattern-triggered immune
585	responses in Arabidopsis reveals a potential role for fatty-acid synthase type II
586	complex-derived lipid signals. J Biol Chem 2007;282:6803-11.
587	[46] Thakur M, Sohal SB. Role of elicitors in inducing resistance in plants against
588	pathogen infection: a review. ISRN Biochemistry 2013;2013:762412.
589	[47]Bueter CL, Specht CA, Levitz SM. Innate sensing of chitin and chitosan. PLoS
590	Pathog 2013;9:e1003080.
591	[48]Noutoshi Y, Ikeda M, Saito T, Osada H, Shirasu K. Sulfonamides identified as
592	plant immune-priming compounds in high-throughput chemical screening increase
593	disease resistance in Arabidopsis thaliana. Front Plant Sci 2012;3:245.
594	[49]Noutoshi Y, Jikumaru Y, Kamiya Y, Shirasu K. ImprimatinC1, a novel plant
595	immune-priming compound, functions as a partial agonist of salicylic acid. Sci. Rep.
596	2012;2.
597	[50] Noutoshi Y, Okazaki M, Shirasu K. Isolation and characterization of the plant
598	immune-priming compounds Imprimatin B3 and -B4, potentiators of disease

resistance in Arabidopsis thaliana. Plant Signal Behav 2012;7:1526-8.

- 600 [51] Xuan W, Murphy E, Beeckman T, Audenaert D, De Smet I. Synthetic molecules:
- helping to unravel plant signal transduction. J Chem Biol 2013;6:43-50.
- 602 [52] Agency USEP, 1988, EPA 738-R-98-002. Prevention, Pesticides and Toxic
- 603 Substances; Status of Pesticides in Registration, Reregistration, and Special Review, p.
- 604 p. 311.
- 605 [53] Agency USEP, June 21, 2012. U.S. National Archives and Records
- Administration's Electronic Code of Federal Regulations, p. 40 CFR 152.25 (USEPA).
- 607 [54] Venkatesh J, Park SW. Role of L-ascorbate in alleviating abiotic stresses in crop
- 608 plants. Bot Stud 2014;55:38.
- 609 [55] Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J. Callose deposition: a
- 610 multifaceted plant defense response. Mol Plant Microbe Interact 2011;24:183-93.
- 611 [56]Zavaliev R, Ueki S, Epel B, Citovsky V. Biology of callose (β-1,3-glucan)
- 612 turnover at plasmodesmata. Protoplasma 2011;248:117-30.
- 613 [57] Vlot AC, Dempsey DMA, Klessig DF. Salicylic acid, a multifaceted hormone to
- 614 combat disease. Annu Rev Phytopathol 2009;47:177-206.
- 615 [58] Avanci NC, Luche DD, Goldman GH, Goldman MHS. Jasmonates are
- 616 phytohormones with multiple functions, including plant defense and reproduction.
- 617 Genet Mol Res 2010;9:484-505.
- 618 [59] Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC. Networking by
- small-molecule hormones in plant immunity. Nat Chem Biol 2009;5:308-16.
- 620 [60] Preston CA, Lewandowski C, Enyedi AJ, Baldwin IT. Tobacco mosaic virus
- 621 inoculation inhibits wound-induced jasmonic acid-mediated responses within but not

- 622 between plants. Planta 1999;209:87-95.
- 623 [61] Huang XF, Su H, Wang CM, Chen H, Shi ZQ. Mechanism of plant-derived
- antiviral agent eugenol against tobacco mosaic virus disease in tobacco (Chinese
- version with English abstract). Jiangsu J Agr Sci 2013;29:749-54.
- 626 [62] Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C. Hydroxylated
- 627 jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a
- 628 partial switch-off in jasmonate signaling. New Phytol 2008;177:114-27.
- [63] Zhu F, Xi D-H, Yuan S, Xu F, Zhang D-W, Lin H-H. Salicylic acid and jasmonic
- 630 acid are essential for systemic resistance against *Tobacco mosaic virus* in *Nicotiana*
- 631 *benthamiana*. Mol Plant-Microbe Interact 2014;27:567-77.
- 632 [64] Lisjak M, Teklic T, Wilson ID, Whiteman M, Hancock JT. Hydrogen sulfide:
- environmental factor or signalling molecule? Plant Cell Environ 2013;36:1607-16.
- [65] Li YJ, Chen J, Xian M, Zhou LG, Han FX, Gan LJ, et al. In site bioimaging of
- 635 hydrogen sulfide uncovers its pivotal role in regulating nitric oxide-induced lateral
- root formation. PLoS ONE 2014;9:e90340.
- 637
- 638
- 639
- 640
- 641
- 642

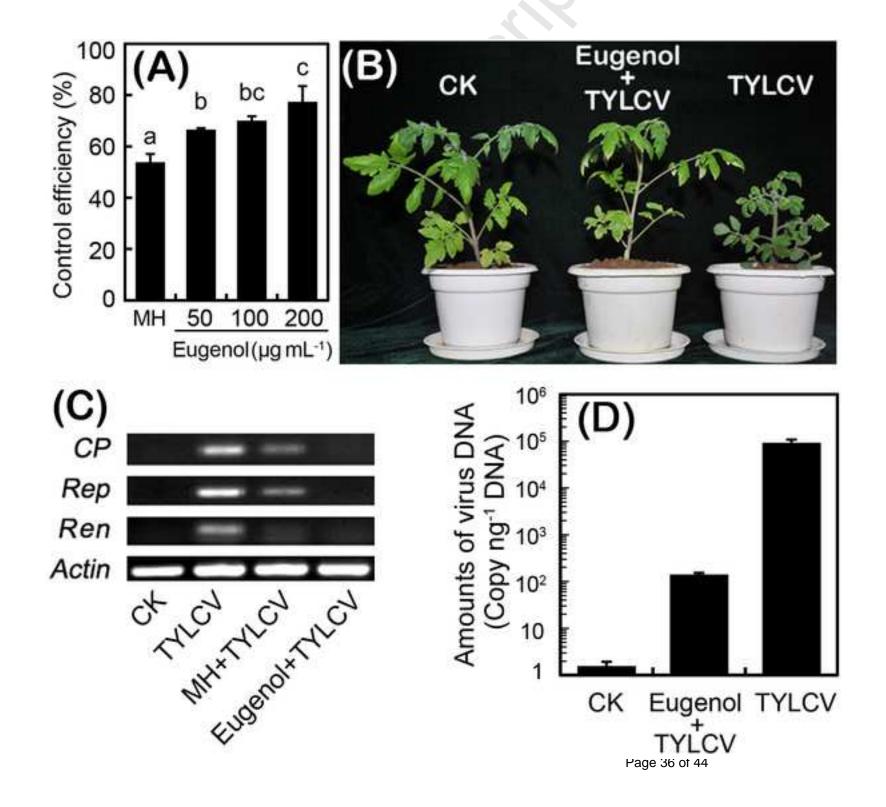
643 Figure legends

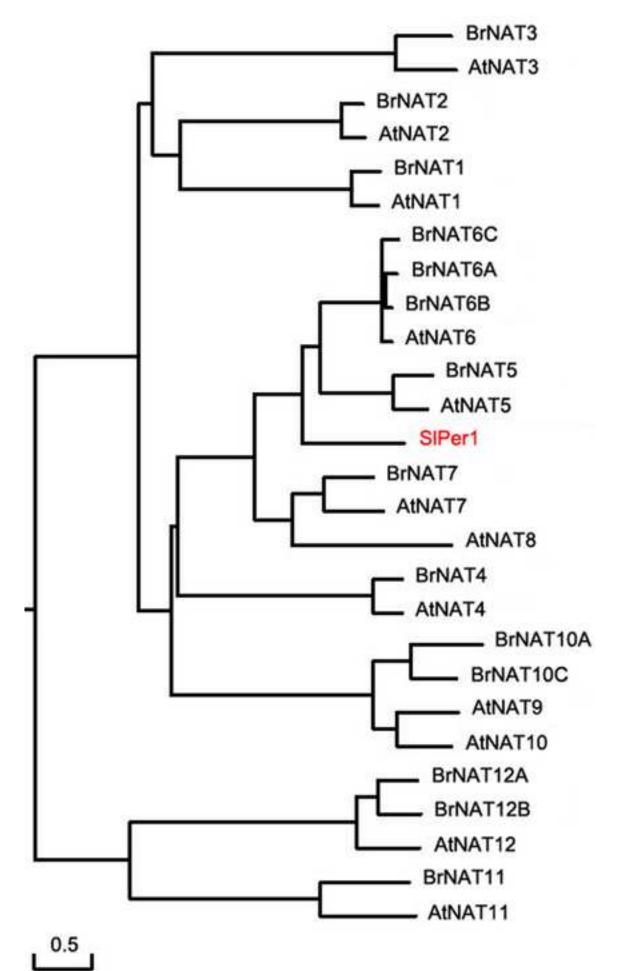
644	FIGURE 1 Anti-viral effect of eugenol against TYLCV. (A) Hydrochloride (MH, 450
645	$\mu g \ m L^{-1})$ and eugenol (50, 100, and 200 $\mu g \ m L^{-1})$ were sprayed on the tomato leaves
646	24 h before TYLCV inoculation. Disease index (DI) was measured to determine
647	control efficiency at 28 days after inoculation with TYLCV. Values shown are means.
648	Different letters indicate significant differences among treatments (P<0.05, ANOVA,
649	LSD). (B) Eugenol (200 μ g mL ⁻¹) was sprayed onto tomato leaves 24 h before
650	TYLCV inoculation. Control plants were similarly sprayed with distilled water. Plants
651	were photographed at 28 days after inoculation with TYLCV. (C) MH (450 μ g mL ⁻¹)
652	and eugenol (200 μ g mL ⁻¹) were sprayed onto tomato leaves 24 h before TYLCV
653	inoculation. Total RNA was extracted from uppermost leaves for RT-PCR analysis
654	of transcript levels of viral genes (CP, Rep, and Ren). Actin was used for cDNA
655	normalization. (D) Eugenol (200 μ g mL ⁻¹) was sprayed onto tomato leaves 24 h
656	before TYLCV inoculation. Control plants were similarly sprayed with distilled water.
657	Total DNA was extracted from uppermost leaves for quantification of virus.
658	
659	FIGURE 2 Phylogenetic relationship of SIPer1 and related NAT members in
660	Brassica rapa and Arabidopsis thaliana. Database accession numbers of proteins are
661	provided in "Materials and Methods".
662	
663	FIGURE 3 Sequence structure of SIPer1 and multiple alignment of predicted amino
664	acid sequence of SIPer1 with NAT6 members from Arabidopsis thaliana, Brassica

665 *rapa*, and *Oryza sativa*. (A) Orange box indicates conserved Xan_ur_permease

666	domain in SlPer1. Bar indicates 50 amino acids. (B) Dark shading with white letters
667	and gray shading with black letters indicate 100% and 75% sequence similarity,
668	respectively. Database accession numbers for proteins are provided in "Materials and
669	Methods". Black lines show transmembrane domains (TMD); red box indicates NAT
670	signature motif *NXGXXXXT#, where * and # indicate (Q/E/P) and (R/K/G),
671	respectively.
672	
673	FIGURE 4 Effects of TYLCV inoculation or eugenol treatment on transcription of
674	SlPer1. (A) Relative transcript levels of SlPer1 in leaves were analyzed at 0, 7, 14,
675	and 21 days after inoculation with TYLCV. (C) Eugenol (0, 100, and 200 $\mu g \ m L^{\text{-1}})$
676	was sprayed onto tomato leaves, and then leaves were harvested 24 h later for
677	analyses of SlPer1 transcript levels. Numbers below band indicate relative abundance
678	of genes with respect to loading control Actin (as determined by densitometric
679	analysis). (B) and (D) Quantitative analysis of gene transcript levels from (A) and (C),
680	respectively. Values shown are mean of three replicates. Asterisk indicates significant
681	difference between treatment and control (P<0.05, ANOVA).
682	
683	FIGURE 5 Effects of plant hormones on <i>SlPer1</i> transcription. (A) Tomato leaves
684	were sprayed with salicylic acid (SA, 200 μ M), methyl jasmonate (MeJA, 100 μ M),
685	gibberellin (50 μ M), and ethephon (100 μ M), and then leaves were harvested at
686	indicated times for analyses of SlPer1 transcript levels. Numbers below band indicate
687	relative abundance of genes with respect to loading control Actin (as determined by

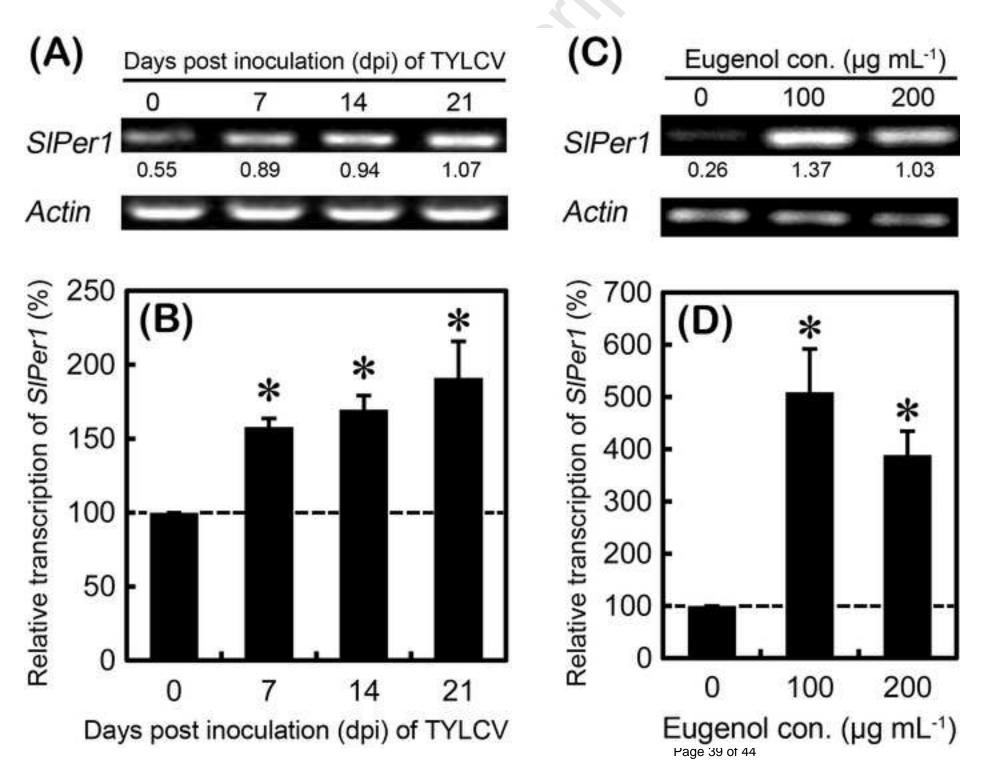
688	densitometric analysis). (B-E) Quantitative analysis of <i>SlPer1</i> transcript levels in
689	response to SA, MeJA, gibberellin, and ethephon treatments. Values shown are mean
690	of three replicates. Asterisk indicates significant difference between treatment and
691	control (<i>P</i> <0.05, ANOVA).
692	
693	FIGURE 6 Effects of sodium nitroprusside (SNP) and sodium hydrogen sulfide
694	(NaHS) on <i>SlPer1</i> transcription. (A) Tomato leaves were sprayed with SNP (200 μ M)
695	or NaHS (200 μ M), and then leaves were harvested at indicated times to analyze
696	SlPer1 transcript levels. Numbers below band indicate the relative abundance of
697	genes with respect to loading control Actin (as determined by densitometric analysis).
698	(B) and (C) Quantitative analysis of <i>SlPer1</i> transcript levels in response to SNP and
699	NaHS treatments, respectively. Values shown are mean of three replicates. Asterisk
700	indicates significant difference between treatment and control (P<0.05, ANOVA).
701	
702	FIGURE 7 Effect of eugenol on generation of endogenous NO in tomato plants.
703	Roots and stems of seedlings were exposed to 100 μ g mL ⁻¹ eugenol for 24 h. Then,
704	the plant samples were loaded with DAF-FM DA for 15 min and immediately
705	photographed $(A - B)$. Relative DAF-FM fluorescent density in roots and stems (C
706	– D). Values shown are mean of three replicates. Asterisk indicates significant
707	difference between treatment and control ($P < 0.05$, ANOVA).
708	

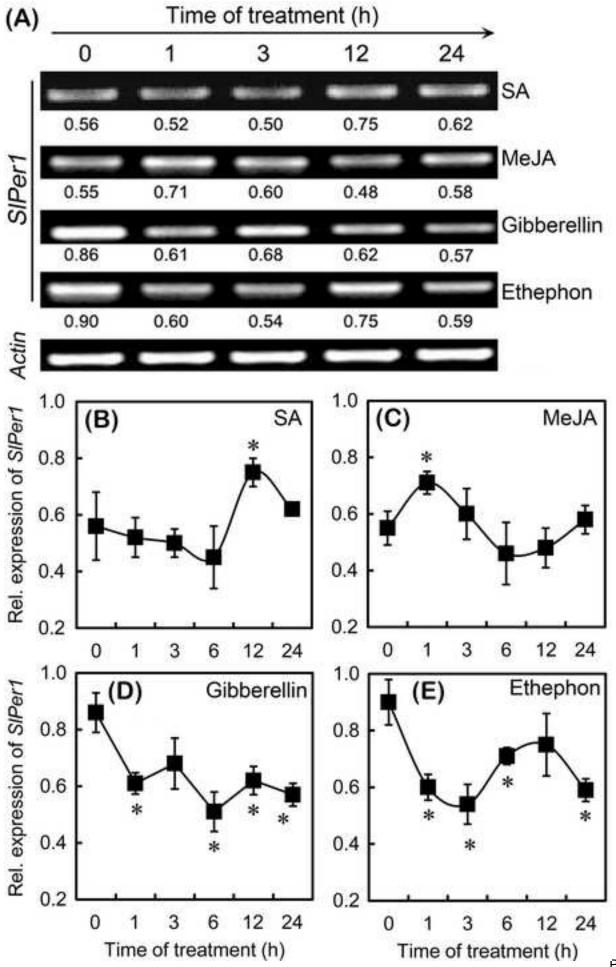

709 **FIGURE 8** Effect of eugenol on generation of endogenous salicylic acid (SA) in


- tomato leaves. Leaves of seedlings were treated with 200 μ g mL⁻¹ eugenol and then
- harvested after 6, 12, 18, 24, 48, and 96 h for analysis of SA contents. Asterisk
- 712 indicates significant difference between treatment and control (*P*<0.05, ANOVA).
- 713
- 714 **TABLE 1** Disease-responsive elements in promoter region of *SlPer1. cis*-Elements
- 715 were predicted using PLACE as described in "Materials and Methods".
- 716

34

716


	401 (+) CTGACY 1892 (+) CTGACY 1734 (+) TTGACC	Elicitor-responsiveness
ELRECOREPCRP1 WBOXATNPR1		
	1734 (+) TTGACC	
WBOXATNPR1		Elicitor- and/or SA-responsivenes
	692 (+) TTGAC	SA-responsiveness
	1734 (+) TTGAC	
	698 (-) TTGAC	
	1709 (-) TTGAC	
T/GBOXATPIN2	331 (+) TAAAG	JA-responsiveness
TABLE 1		



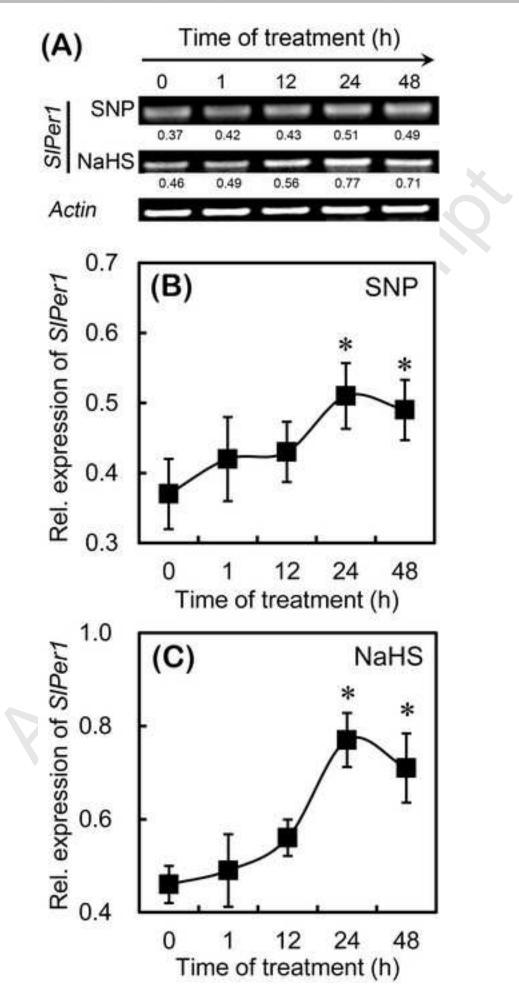
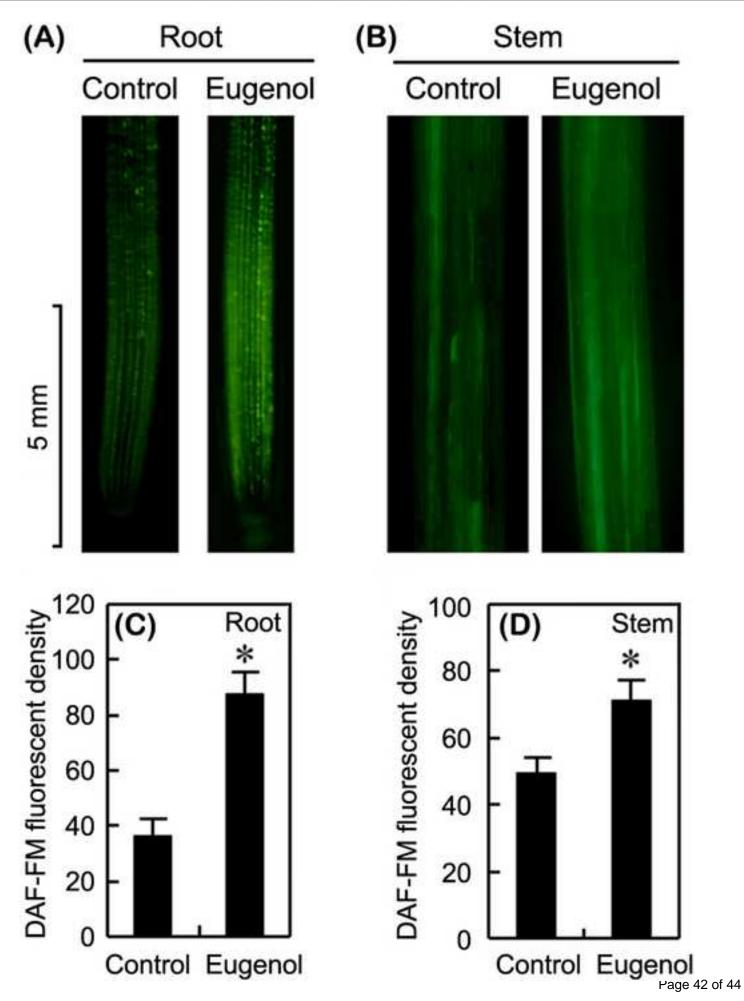
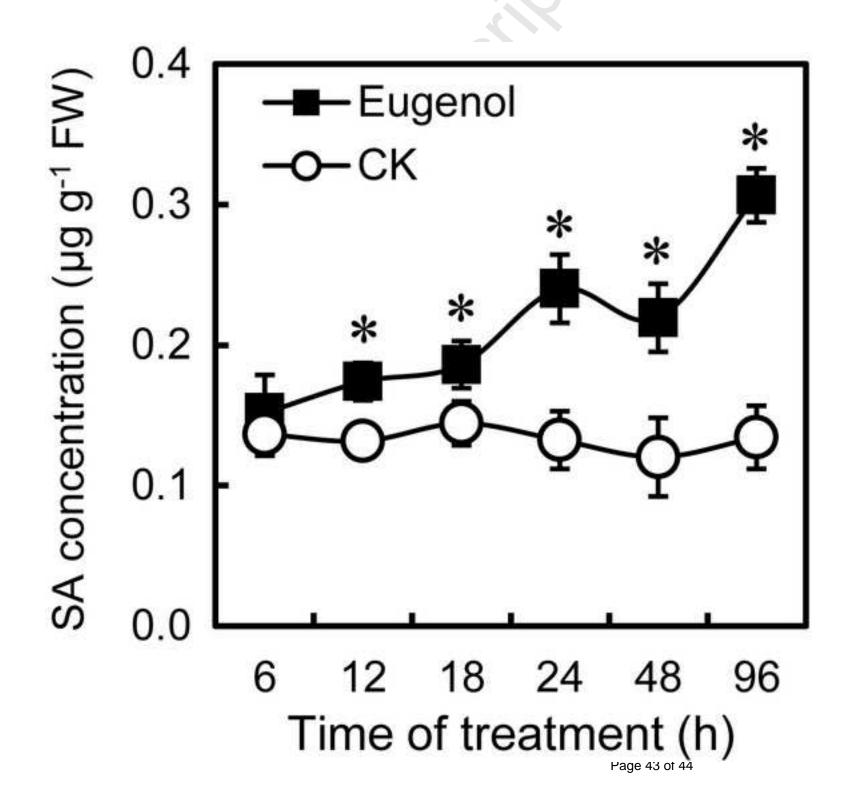

(A)			_50) aa j
N	Xan_ur_pe	ermease domaii	n (С
(B)			TMD1	A Seco
SlPerl BrNAT6A BrNAT60 BrNAT6C BrNAT5 AtNAT5 OsNAT6	BAGGGAPAARAMEPC DESTRO	CLEDESYCITSPPONPEN LLGFC CLEDESYCITSPPONPEN LLGFC CLEDESYCITSPPONPEN LLGFC CLEDESYCITSPPONPEN LLGFC CLEDESYCITSPPONPEN LLGFC CLEDESYCITSPPONPEN LLGFC	YLVNLGTIV I DALVPCM GGIPIKA YLVNLGTIVI I ALVPCM GGIPIKA YLVNLGTIVI I SALVPCM GRNDIKA YLVNLGTIVI I SALVPCM GGIPIKA YLVNLGTIVI I SALVPCM GRNDIKA	68 74 74 71 71 74 70 80
	TMD2	TMD3	TMD4	8
SlPerl BINATGA BINATGB BINATGC BINATG AINATG AINATG OSNATG	VICTOLEVACINTLIC SY FOTRLEAV VYCT LEVACINTLIC I FOTRLEAV VYCT LEVACINTLIC I FOTRLEAV NCT LEVACINTLIC I FOTRLEAV LOT LEVACINTLIC I FOTRLEAV VYCT LEVACINTLIC I FOTRLEAV VYCT LEVACINTLIC I FOTRLEAV LCT LEVACINTLIC I FOTRLEAV	SYTFVAPTISIE GRUSS, FC SYTFV TTISIE GRUSS, FC SYTFV TTISIE GRUSSTSN SYTFV TTISIE GRUSSTSN SYTFV TTISIE GRUNVAL SYTFVETTISIE GRUNVAL SYTFVETTISIE GRUNVAL SYTFVETTISIE GRUNVAL	EG SKIICK TOGALIVAS ICIV GFE II FE I R TOGALIVAS ON GFS II FE I R TOGALIVAS ON GFS VI FE I R TOGALIVAS ON GFS VI FI IIR TOGALIVAS ON GFS VE FK IER TOGALIVAS ON GFS NTF II R TOGALIVAS ON GFS NTF II R TOGALIVAS OF GFS	154 154 154 151 151
	TMD5	TMD6	TMD7	
S1Per1 BINAT6A BINAT6B BINAT6C BINAT5 AINAT5 AINAT5 OSNAT6	GLWRNVERELSEISAVPLVELVONGLYN GLWRNVERELSFISANPLVELVONGLYN	GFF VARC FIGLT IL LUPY GFF VARC FIGLT IL LUPY GFF VARC FIGLT IL LUPY GFF VARC FIGLT IL LIPY GFF VARC FIGLT IL LUPY GFF VARC FIGLF IL LUPY		227 234 234 234 231 231 231 230 240
SlDerl BrNAT6A BrNAT6B BrNAT6C BrNAT6C AtNAT6 AtNAT5 OgNAT6	YANG AT GGAY SUBAN IN A CRITEN YANG AT GGAY SUBAN IN A CRITEN YANG AT GGAY SUBAN IN TO TO CRITEN	APNIRVPOPPEWGEPPEAG	E FANN A FVALVESTOOF A RYA E FANN A FVALVESTOOF A RYA FANN A FVALVESTOOF A RYA	314 314 314 311 314 310
010		*NXGXXXXT#	TMD8	397
S1Perl BrNAT6A BrNAT6B BrNAT6C BrNAT5 AtNAT6 AtNAT5 OsNAT6	ATT LPPS TISRO GONCOT TIS GLFG ATTS PPS TISRO GONCOT TIS GLFG	NGAGSSVS SINGL ALTINGSPRU TOACSSVS EN GLALTER GSPRU TOACSSVS EN GLALTER GSPRU TOACSSVS EN GLALTER GSPRU TOACSSVS EN GLALTER GSPRU	VVGTAAGENIFESILGKEGAVEAG VVGTAAGENIFESILGKEGAVEAS DA VVGTAAGENIFESILGKEGAVEAS DA VVGTAAGENIFESILGKEGAVEAS DA VVGTAAGENIFESILGKEGAVEAS DA VVGTAAGENIFESILGKEGAVEAG G	394 394 394 391 391
	TMD9	TMD10	TMD11	
SIPer1 BrNAT6A BrNAT6B BrNAT6C BrNAT6C BrNAT5 AtNAT6 AtNAT5 OsNAT6	WGAL CILFAYVGS CILLC CNLNS I AL C FAYVGS CILLC CNLNS I AL C FAYVGS CILLC CNLNS I AL C FAYVG CILLC CNLNS I AL C FAYVG CILLC CNLNS I AL C FAYVG CILLC CNLNS I AL C FAYVGS CILLC CNLNS I AL CI FAYVGS CILLC CNLNS F AL CI FAYVGS VC LC CNLNS	FREE FILGES OF GLS POYFNE FREE FILGES OF GLS POYFNE	ALL GYGPVHIG RWHE COVING FSS SE ALL GYGPVHIG ANNI OOVING FSS SE ALL GYGPVHIG RWHE DOVING FSS SE ALL GYGPVHIG RWHE DOVING FSS SE ALL GYGPVHIG RWHE DOVING FSS SE	474 474 474 471 474 470
SIPer1 BrNAT6A BrNAT6B BrNAT6C BrNAT5 AtNAT5 AtNAT5 OSNAT6	N OM ATT LOTTH TO SSIPRORGED NOT ATT LOTTH TO SSIRRORGED NOA ATT LOTTH TO SSIRRORGED NOA ATT LONGTH TO SSIRRORGED NOS ATTLOTTH TO SSIRRORGED NOS ATTLOTTH TO SSIRRORGED NOS ATTLOTTH TO SSIRRORGED	AND FRANKLER AND AND FRANKLER AND		532 529 532 528

Figure 4




ACCEPTED MANUSCRIPT

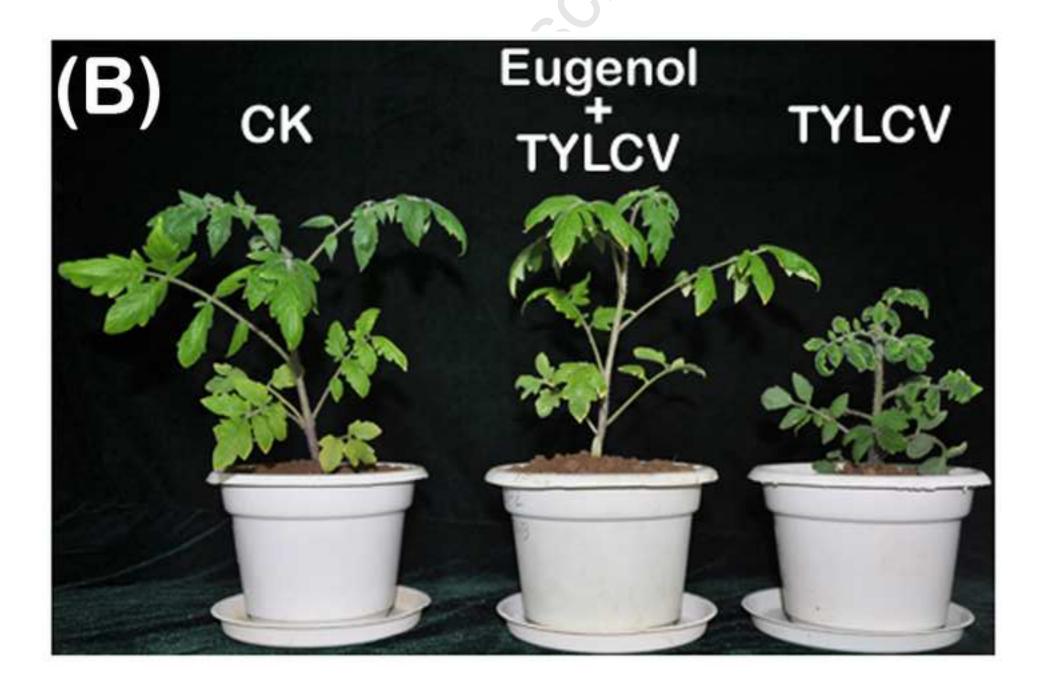


Figure 7

